Blog

PCBs and the Military Sector

Bestproto-PCBs and the Military Sector

Printed Circuit Board Assemblies or PCBAs otherwise called, Printed Wiring Boards (PWBs) and Circuit Card Assemblies (CCAs), are an integral part of many military systems and devices. From communication equipment to weapons systems, PCBAs/PWBs/CCAs play a critical role in the functionality and reliability of military technology. 

In this article, we will discuss the use of PCBAs/PWBs/CCAs in the military sector, the differences between military-grade and private-sector PCBs, and the importance of proper inspection and testing.

The Role of PCBAs/PWBs/CCAs in Military Applications

PCBAs/PWBs/CCAs are used in a wide range of military applications, including communications systems, radar and sonar equipment, avionics, and weapons systems. They provide a reliable and efficient way to connect and power various components, allowing for the integration of complex systems and the creation of compact and portable devices.

Military-Grade vs Private-Sector PCBAs/PWBs/CCAs

Military-grade PCBAs/PWBs/CCAs differ from those used in the private sector in several ways. They are typically made with higher-quality materials and manufacturing processes to meet the strict requirements of the military. For example, military-grade PCBs may use higher-grade copper and insulation materials and more advanced fabrication techniques.

Also, military-grade PCBAs/PWBs/CCAs are typically designed with higher levels of redundancy and fail-safes to ensure that they continue to function even in the event of component failure or damage. This is critical for military applications, where the failure of a PCB can have serious consequences.

The Importance of Inspection and Testing

Proper inspection and testing are crucial to ensure the quality and reliability of military-grade PCBAs/PWBs/CCAs. This includes visual inspection, electrical testing, and functional testing to verify that the PCB meets all specified requirements and specifications.

One key aspect of PCB inspection and testing is power inspection. This involves verifying that the PCB can deliver the necessary power to the various components and systems– and that it does so efficiently and without overheating. Power inspection is vital for military applications, where the failure of a PCB due to power issues can have serious consequences.

BESTProto: Your Trusted Source for Military-Grade PCBs

PCBAs/PWBs/CCAs play a vital role in the military sector, providing the connectivity and power necessary for a wide range of systems and devices. Military-grade PCBAs/PWBs/CCAs are designed to meet the demanding requirements of the military, and proper inspection and testing are crucial to ensure their quality and reliability.

 

If you are in need of high-quality, military-grade PCBAs/PWBs/CCAs, be sure to check out BESTProto for all your prototyping and manufacturing needs. Our team of experts is ready to help you bring your project to fruition with the best possible PCB solutions. Contact us today for a free quote and learn how we can help.

Read more

4 Benefits of PCBA, PWA and CCA Assembly Services

BESTProto-benefits-of-pcb-assembly-electric-circuit

When it comes to PCB Assembly  (PCBA), including Printed Wiring Board assembly (PWB) and Circuit Card Assembly (CCA) you have plenty of options. Although some may try to take shortcuts or even go the DIY route, this is ill advised. Generally speaking, printed circuit board assembly is one of the most important aspects of PCB fabrication. It pays to work with a high-quality PCB assembly service provider. Here is a closer look at the benefits of working with our team of experts at BESTProto. 

Benefits of Working with BESTProto for PCB, PWB and CCA Assembly Services

What are the benefits of entrusting BESTProto with your PCB Services? 

  • Leveraging Expertise: One of the top benefits of outsourcing your PCB services to us is that it allows you to leverage the expertise of our team of experts. With decades of collective experience, our experts are highly skilled at building customized PC boards of all kinds. 
  • Cost-Effectiveness: Another major benefit of working with a professional company for your PCB assembly services is that these services may be highly cost-effective. This is because reliable PCB assembly services fully understand concepts such as design changes, price fluctuations, part obsolescence etc. This makes it possible for them to design PCB assemblies in a manner that is the most cost-effective short and long term. 
  • Boost Capacity: Working with BESTProto will also enable you to boost the capacity of your circuit boards. Companies that have to scale unexpectedly may experience downtime while reconfiguring their boards. However, working with a reputable company like BESTProto can drastically reduce any downtime that a given company may experience.
  • Focus on Daily Operations: Lastly, creating printed circuit board assemblies is a complex process. Therefore, creating them in-house can seriously distract from daily operations. By working with us, you can continue focusing on what matters most: running your business.

Do You Need Premium Quality PCB, PWB and CCA Assembly Services?

Overall, if you are in the market for premium quality PCB assembly services, we’re here to help. Contact our team of professionals at BESTProto for a quote and more information. 

Read more

Everything You Need to Know About Box Builds

Three-dimensional view of the electronic Board of a digital set-top box, motherboard

When it comes to electronics manufacturing, there are a lot of terms and concepts that can be confusing to newcomers. In this blog post, we’ll be taking a deep dive into one of these concepts: box builds. Read on to learn more about box builds and how they can benefit your business.

What is a Build Box?

In the electronics manufacturing industry, a “box build” is the term used to describe the process of putting together all the components of a final product into a single enclosure. A box build can be as simple as mounting a printed circuit board assembly (PCBA) into a plastic or metal enclosure and adding boards, cable assemblies, connectors and a few peripherals, or it could involve hundreds of components and sub-assemblies. Regardless of the complexity, all box builds have one thing in common: they require careful planning and execution to ensure a high-quality end product.

 

Why Use BESTProto for Box Builds?

There are several reasons why electronics manufacturers such as BESTProto do box builds to assemble their customer’s products. First, box builds allow for greater flexibility in the design process. By outsourcing the assembly of individual components, manufacturers can focus on designing and building the PCB assembles and enclosures that will house those components. This can result in better-designed products that are easier to assemble and test.

 

Second, box builds can save time and money by reducing assembly errors. When components are shipped pre-assembled from different suppliers, there is always the risk that something will be misassembled during production. This can result in costly delays and rework. By outsourcing the entire assembly process to a single supplier, manufacturers can avoid these pitfalls and reduce their overall costs.

 

Finally, box builds allow manufacturers to outsource production to specialized suppliers who have the experience and expertise necessary to produce high-quality products. These suppliers often have access to state-of-the-art equipment and processes that would be cost-prohibitive for most manufacturers to purchase and maintain themselves. By outsourcing production, manufacturers can take advantage of these resources without incurring a significant upfront investment. 

Conclusion

Box builds are an essential part of BESTProto’s electronics manufacturing process. By outsourcing the assembly of individual components, manufacturers can save time and money while maintaining a high level of quality control. Specialized suppliers with experience in in box builds can provide manufacturers with access to state-of-the-art equipment and processes, ensuring that products are assembled correctly and efficiently.

 

Read more

How to Prevent Future PCB Problems

BestProto-How to Prevent Future PCB Problems

From smartphones & computers to critical medical electronics & military equipment, printed circuit boards are essential components that make it all possible. However, the slightest manufacturing errors and defects in PCBs can cost a lot of money in the long run– and even cost lives if it’s an important medical or military device in the field.

That’s why PCB inspections from reliable and reputable engineers are more important today than ever. In this article, we’ll cover a few of the inspection methods used to find defects and prevent future PCB problems.

Flying Probe Testing

Flying probe testing (FBT) is a cost-effective method that is ideal for low-volume production or prototypes. The test probe “flies” (or moves) from test point to test point to easily and quickly identify open & short circuits or wrong values. FBT can also ensure each component is correctly placed and find anything that is missing. However, it does NOT allow for power inspections or functionality inspections.

In-Circuit Testing

In-circuit testing (ICT) is also an FBT, but it uses electric probes to run a current through various points of the PCB to check for power levels, resistance, capacitance, short/open circuits, and other basic information to determine the PCB’s integrity. This inspection is ideal for mid to high-volume productions, and it’s a great tool for picking out design-related defects, component deficiencies, and more.

X-Ray Inspections

Another inspection type that’s perfect for advanced components (such as multi-layered PCBs or those with a multitude of sockets) is X-Ray inspections. The X-ray gives a detailed look at each of the parts, making it less likely to miss errors that would be overlooked by a typical visual inspection. This includes giving detailed information on parameters such as voiding, solder thickness, and the sizes of the joints.

Reliable PCB Repair Services & Inspections You Can Count On

BESTProto is a PCB company with many years of experience in inspecting PCB units for a variety of industries including medical, military, telecommunications, and more.  Contact us today to learn more about our PCB inspection services

Read more

How to Tell if a Printed Circuit is Bad

BestProto-How-to-Tell-if-a-Printed-Circuit-is-Bad

A printed circuit board, or PCB, is present in almost all electronic devices. Computers, smartphones, and television sets all have them. PCBs are usually very reliable but may deteriorate because of age and misuse. If your PCB is not working as expected, take the following steps to troubleshoot the issue. 

The Tools You Will Need

You would need a few simple tools to test a PCB:

  •       A multimeter
  •       Soldering iron
  •       Desoldering station
  •       Magnifying glass

Now, let us discuss how we can go about testing a circuit.

Visual Inspection

We should begin with a visual inspection of the PCB. First, switch off the power to the circuit. Look for scratches, broken traces, misplaced solder, and burn spots. See if there are any cracked chips or blown capacitors. Do a sniff test – burned components will give off an acrid smell.

Power Check

Next, turn your attention to the power module. Switch on the power. Measure the input and output voltages of the voltage regulator with the multimeter. Verify that the values are as expected. A very low voltage at the output could mean that the regulator or another point has a short circuit. See if any component has heated up (but be very careful – some parts can get quite hot). Don’t keep the power on for long if you suspect a problem.

Schematic Check

Check each connection physically and compare it with the schematic. If there are mismatches with the schematic, then the circuit is bad.

Software Diagnostics

The PCB might come with a software diagnostic package. If so, run the diagnostic program to get a report on whether the PCB is functional or damaged. The program may also identify the faulty part.

Next Steps

We have discussed some simple techniques for checking if a PCB is defective. There are more complex and expensive methods like In-Circuit Test (ICT), Flying Probe Test, Functional Circuit Test, and Boundary Scan Testing.

If you need an old PCB repaired or a new one designed and built, consider hiring BESTProto. They are a professional group of technicians and engineers who are experts in PCB assembly and PCB repair services.

Read more

Five Types of Product Prototypes

BestProto - Five Types of Product Prototypes

Before most devices are released to the market, a prototype is developed to test the process or the concept. A prototype is the initial version of the final product. The prototype helps inventors and entrepreneurs when they are meeting with manufacturers, retailers, patent attorneys, and sources of funding. It captures how the subsequent products are put together, their appearances, and what they will do. A prototype will provide the specifications for the real product and how it works instead of the theoretical design.  

The following are the five different types of product prototypes:

Digital Prototype

A digital prototype is a virtual prototype or a computer model that represents the real product. Design engineers use 3D modeling or Computer-Aided Design (CAD) to build a realistic product model. Many types of digital prototypes and other sophisticated digital prototypes use a wide range of simulations to test impacts such as temperature resistance, strength, or other product’s behavior virtually before any physical product is created.

A digital prototype offers many benefits in the same way a physical prototype provides the added benefit of being faster to create at a lower cost.

Mockup Prototype

A mockup prototype is typically the easiest and can be made using modeling clay or cardboard and a tape or the cheapest 3D printer. The basic idea is to capture the shape of the final product and how it fits together.

Marketing Prototype

A marketing prototype is created focusing on the appearance and how customers will interact with the product. It is ideal when you have to meet with the customers and want their feedback. The prototype can be used in advertising and branding.

Functional Prototype

A functional prototype is created to show how the products solve consumers’ needs. It is also known as the working prototype because it is created to showcase how the final product will operate.

Pre-Production Prototype

A pre-Production Prototype is created when the manufacturing is ready to take off. The model uses the same manufacturing processes as the final products. The prototype is ideal for marketing.

Where PCB Assembly Prototyping Fits In

Many entrepreneurs looking for PCB Assembly prototyping can find these prototypes a little confusing, and that is why you need to consult an expert. BESTProto remains the leader in PCB assembly and has PCB prototyping tailored to suit any business needs. 

 

Read more

Understanding PCB Assembly Repairs

BESTProto-understanding-PCB-repairs

Printed circuit board Assemblies are the brains of all of our modern electronic devices. Currently a 58 billion dollar industry, its worth is expected to grow up to 75 billion dollars by the year 2026. PCB Assemblies are so common in all of the devices we use every day that a failure causes us great inconvenience and even some personal stress.

There are times when a PCB Assembly will give some warning that it is about to experience a failure. For instance, a smartphone might display vertical lines or other distortions on the screen and a computer can give corrupt data warnings or reboot at random. The ultimate symptoms of PCB Assembly failure include overheating, smoke, an odor of burnt electronic components, and the failure of the unit to power up at all.

These are some of the most common reasons for PCB Assembly failures.

  1. Manufacturing defects – Misaligned layers, crossed signals, short circuits, and exposure to electrostatic discharge (ESD) are the most likely causes of PCB Assembly failure and generally occur during the PCB assembly process.
  2. Component burning – Caused by incorrect component spacing, component failures, errors made by the technician, and intense heat, repairing a burned component can mean replacing the entire PCB Assembly.
  3. The surrounding environment – PCB assembly is conducted in a clean climate-controlled area in order to prevent heat and humidity from causing the boards to expand and warp. After the board has been assembled and is being used for its intended purpose, external debris including liquid, fibers, dust, and hair can adhere to the PCB Assembly and cause it to overheat.
  4. Soldering errors – The consistency of the solder as it refers to its moisture content as well as application errors result in defects including excessive solder, cold joints, component shifting, and lifted pads.
  5. The PCB Assemblies’ age – The average PCB Assembly can last up to 10-20 years or more. As a PCB Assembly reaches its life expectancy, the electronic components begin to break down and require repair or replacement.

Repairing or replacing the components on a PCB Assembly is delicate work requiring expert precision. The technicians at BESTProto are supervised by master instructors in IPC A610 and JSTD-001 to guarantee that all PCBs we work on will meet current electronic industry standards. BESTProto offers the following PCB repair services:

  • Out of production/non-current electronic equipment and component repair
  • Re-box and re-label services
  • PCB troubleshooting and component level repair
  • PCB testing

Please visit our website to learn more about our PCB repair services or to contact us to schedule a consultation.

Read more
medical devices powered by PCBs

PCBA Services and the Medical Industry

medical devices powered by PCBs

A fascinated first-time mother receives a picture of the baby growing inside her. A diabetic verifies that his blood glucose level is in an acceptable range. A dentist has located a cavity that early treatment can repair. What do all of these scenarios have in common? All of the medical devices that make these discoveries possible are powered by Printed Circuit Board Assemblies (PCB Assemblies) In certain industries and parts of the country, they refer to PCB Assemblies interchangeably as PWBs (Printed Wiring Boards) and also CCAs (Circuit Card Assemblies). Flexibility and surface mount technology are two of the major developments in PCBA services that have made PCB Assemblies for medical companies a reality.

In fact, the market for wearable medical devices is growing by 16.4 percent each year. These kinds of portable devices, such as ECG and blood pressure monitors and biosensors, allow technology to keep up with our fast-paced lifestyles. Patients no longer have to be in a doctor’s office to have their chronic conditions monitored and for that data to be transmitted to the medical professionals who need it. Doctors’ visits can also be conducted remotely thanks to computers, tablet devices, and virtual meeting apps.

The potential for PCB Assembly to revolutionize the medical equipment industry is endless. PCB Assemblies already make the following possible:

  • Implanted devices, such as pacemakers, defibrillators, Responsive Neurostimulators, and cochlear implants
  • Diagnostic and imaging equipment including ultrasound equipment, MRIs (magnetic resonance imaging), and CT (computerized axial tomography) scanners
  • Monitoring devices for glucose levels, body temperature, heart rate, and blood pressure

PCB Assembly is also requisite to the operation of infusion pumps and nerve and muscle stimulation equipment.

What does the future hold? Along with greater flexibility, PCB Assembly innovations are predicted to accommodate two major trends.

  1. 3D PCBs – 3D technology will decrease the rate of human error and the production of waste materials.
  2. Biodegradable PCBs – Electronic waste and the short-lived nature of electronic devices is causing concern for the future. Switching to recyclable and biodegradable PCB materials is a workable solution.

BESTProto is an experienced company in the medical PCB Assembly industry. We are ISO 9001:2015 Certified, AS9100-2015 Certified, ITAR Registered and NIST 800-171 Compliant not to mention ROHS compliant. Contact us today to discuss your project or to receive a quote or answers to your questions.

Read more

Understanding Box Build Assembly Services

BESTProto-understanding-box-build-assembly-services

When your company needs to create a finished product and you need to have your PC Board Assemblies placed into an enclosure along with a power supply, cable assemblies, connectors to the outside world etc., you are looking for what the industry calls a Box Build.  You have to strike the perfect balance between the ideal design concept and the ability to manufacture it. This can lead to many challenges, including higher component and assembly costs and quality control issues. The answer is BESTProto.  Along with our PCB Assembly services, we can help guide you through the concept and design of the box build straight through to the construction and resulting production of the needed units.

The idea of a box build is relatively easy to understand. It’s literally a box-like shape (enclosure) made out of materials like plastic or metal that will serve as the means to hold all the electronic components. That’s where the concept gets trickier. A box build not only involves the creation of the box/enclosure but also the routing of wires, connectors and cable assemblies and attaching sub-components and other assembly work and in some cases, testing. Some of these sub-components can include relays, pneumatics, logic controllers, DIN rails, PCBs, cable assemblies, safety components, and power supplies.

While creating your box build can be done internally, there are several compelling reasons why you would benefit from having your box build assembly work done by BESTProto:

  1. Removing the burden of managing several suppliers saves money and time.
  2. Miscommunication can be reduced or eliminated by not dealing with several vendors and designers. You can also make changes more effectively, streamline the process, and reduce lead times.
  3. A BESTProto can give you needed input to enhance and perfect your design.
  4. A box build assembly service can provide the most cost-effective resources along with stricter quality control and a one-stop-shop.

Working with one vendor simplifies your process, reduces costs, improves communication, and optimizes quality control management. BESTProto offers design, engineering, and PCB assembly services for many industries including medical, industrial, telecommunications, and the military. AS 9100 and ISO 9001:2015 certified, we are also ROHS compliant and ITAR (International Traffic in Arms Regulations) compliant. Contact us today to learn more about our services and to request a quote. 

 

Read more
green and gold flex PCB

The Benefits of a Flex (Flexible) Circuit Board

green and gold flex PCBFlexible (flex) circuits have been growing in popularity and use in the last decade although the idea is not new. The earliest prototype of a flex circuit board was patented in 1903 and described by Albert Hansen as metal conductors being affixed to paraffin coated paper. Flex circuits are considerably more sophisticated today, but the idea has allowed for the development of life-enriching electronic products.

Its predecessor, the rigid circuit board, has one main disadvantage. Formed by laminating copper over fiberglass then covered by a solder mask layer and finally a silkscreen layer, the board cannot be reshaped or modified, but that doesn’t mean it hasn’t been vital. Rigid PCBs are used commonly in computers, AC/DC power converters, vending machines, cars, HVAC systems, toys, and GPS devices just to name a few.

Flex circuits are made by applying the metallic traces, usually copper, onto a flexible substrate, usually polyimide. The types of flexible printed circuits include:

  • Single sided circuit
  • Double sided circuit
  • Multi-layer circuit
  • Rigid flex circuit
  • Maxi flex
  • Catheter flex
  • Sculptured flex circuits

Flexible PCBs solve many problems that rigid PCBs can’t, including:

  1. Saving Weight and Space

    – Flex PCBs have a volume of about 70% less than rigid circuits.

  2. Making Dynamic Flexing Possible

    – Flex circuits can withstand continuous movement.

  3. Making Installation and Maintenance Easier

    – They can be moved and even bent or twisted without damaging the conductor.

  4. Improving Reliability

    – A flex PCB can continue to function after millions of repetitions of movement.

  5. Streamlining Product Design

    – Smaller, lighter flex PCBs open up a world of options for portable, wearable products.

  6. Upgrading Thermal Management

    – Flex PCBs have a higher melting point and dissipate heat better to protect components.

  7. Saving Money

    – Flex PCBs are less expensive to produce than rigid PCBs.

In short, electronic products can now be smaller, lighter, and more functional. Flexible circuit boards are currently used in anti-lock brakes, cameras, airbag systems, barcode equipment, and medical equipment like ultrasound imaging, but they are opening doors to new innovations like fitness trackers, heart monitors, and smartwatches. It has been predicted that about 440 million wearables will be sold and shipped in 2024 guaranteeing a place for flexible circuit boards in the future. BESTProto is ready to meet this challenge and to provide PCB services. Contact us for more information about our services.

Read more